M1. (a) (i) step-up
both parts required more turns on the secondary / output (coil) do not accept coils for turns 'secondary output is greater than primary input' is insufficient
(ii) (easily) magnetised (and demagnetised) accept (it's) magnetic it's a conductor negates answer
(b) 60
allow 1 mark for correct substitution, ie $\frac{230}{15}=\frac{720}{N_{s}}$

$$
\begin{aligned}
& \frac{25000}{?}=\frac{800}{12800} \\
& \text { or } \\
& \frac{25}{?}=\frac{800}{12800}
\end{aligned}
$$

volt(s) / V
an answer 400 gains 2 marks
an answer 400 kilovolts / kV gains 3 marks
although the unit mark is independent to gain 3 marks it must be consistent with the numerical value
(b) any one from:
do not accept any response in terms of heat insulation, safety or electric shock

- (so that there is) no short circuit
- (so that the) current goes round the coil
do not accept electricity for current
- (so that the) current does not enter the core
(c) (the alternating p.d. in the primary causes) an (alternating) current in the primary
reference to the current in the core negates this mark
(causes an) alternating / changing (magnetic) field in the (iron) core
induces (alternating) p.d. across the secondary (coil) accept in / through or similar for across accept current for p.d. accept output (coil) for secondary (coil) to gain $\mathbf{3}$ marks the sequence must be correct
(a) which causes the magnet to turn / spin / rotate
(magnetic) field / lines of force / flux rotate(s) / move(s) / through / in / cut(s) the coil do not credit the idea that movement 'creates' the magnetic field
potential difference / p.d. / voltage induced across the coil do not credit just 'current induced'
(b) any one from:
- more powerful / stronger / lighter magnet do not credit 'a bigger magnet'
- larger / more / bigger / lighter cups / with a bigger surface area
- longer arms
- lubricate the spindle
- add more turns to the coil

M4.
(a) It is easily magnetised.
(b) p.d. across the secondary coil is smaller (than p.d. across the primary coil)
(c) ratio $\underline{V_{\underline{p}}}=\underline{6}$
$V_{s} 12$
accept any other correct ratio taken from the graph

$$
\underline{6}=\underline{50}
$$

$12 N_{p}$
use of the correct turns ratio and substitution or correct transformation and substitution

$$
N_{p}=100
$$

allow 100 with no working shown for $\mathbf{3}$ marks

M5. (a) (i) generator
(ii) alternating current
(iii) voltmeter / CRO / oscilloscope / cathode ray oscilloscope
(b) (i) time
(ii) peaks and troughs in opposite directions
amplitude remains constant dependent on first marking point
(c) any two from:

- increase speed of coil
- strengthen magnetic field
- increase area of coil
do not accept larger
(a) (the alternating current creates) a changing / alternating magnetic field
(magnetic field) in the (iron) core
accept that links with the secondary coil current in the core negates this mark
(causing a) potential difference (to be) induced in / across secondary coil accept voltage for p.d.
(b) (i) 20
allow 1 mark for correct substitution, ie $\frac{230}{V_{\mathrm{S}}}=\frac{575}{50}$ or $\frac{\mathrm{V}_{\mathrm{s}}}{230}=\frac{50}{575}$
(ii) 0.3
or
correct calculation using $230 \times I_{p}=$ their (b)(i) $\times 3.45$
allow 1 mark for correct substitution, ie $230 \times I_{p}=20 \times 3.45$
allow ecf from (b)(i) for 20
OR
substitution into this equation $\frac{\mathrm{I}_{\mathrm{p}}}{\mathrm{I}_{\mathrm{s}}}=\frac{\mathrm{N}_{\mathrm{s}}}{\mathrm{N}_{\mathrm{p}}}$
(c) any one from:
- fewer (waste) batteries have to be sent to / buried in land-fill
- the soil is polluted less by batteries in land-fill
- fewer (waste) batteries have to be recycled
- fewer batteries have to be made
- less raw materials are used in making batteries
- customers have to replace their batteries less often
longer lifetime is insufficient
- customers have to buy fewer (replacement) batteries
it costs less is insufficient
'best-fit' approach to the marking.

0 marks

No relevant / correct content.

Level 1 (1-2 marks)

Either there is an attempt at a description of the construction of a transformer
or
a correct statement of the effect of one type of transformer on the input p.d.

Level 2 (3-4 marks)

There is a description of the construction of a transformer and
a correct statement of the effect of one type of transformer on the input p.d.

Level 3 (5-6 marks)

There is a clear description of the construction of a transformer and
there is a correct description of how transformers affect the input p.d.
details of construction:
extra information
a (laminated) core
core is made from a magnetic material / iron
2 coils
the coils are made from an electrical conductor / copper
the coils are covered in plastic / insulation
the coils are (usually) on opposite sides
step-up transformer has more turns on secondary coil than (its) primary (or vice versa)
step-down transformer has fewer turns on secondary coil than (its) primary (or vice versa)
effect on input p.d. :
step-up transformer, the output p.d. is greater (than the input p.d.) accept voltage for p.d.
step-down transformer, the output p.d. is lower (than the input p.d.)

M8.(a) attempt to draw four cells in series
correct circuit symbols
circuit symbol should show a long line and a short line, correctly joined together
example of correct circuit symbol:

(b) (i) $6(\mathrm{~V})$
allow 1 mark for correct substitution, ie $V=3 \times 2$ scores 1 mark provided no subsequent step
(ii) 12 (V)
ecf from part (b)(i)
18-6
or
18 - their part (b)(i) scores 1 mark
(iii) $9(\Omega)$
ecf from part (b)(ii) correctly calculated 3 + their part (b)(ii) / 2
or
18/2 scores 1 mark
provided no subsequent step
(c) (i) need a.c.
battery is d.c.
(ii) 3 (A)
allow 1 mark for correct substitution, ie $18 \times 2=12 \times l_{s}$ scores 1 mark

